
- KhB -v 1M 1
\

r {
i 0 J«1 gj v 1

1 8 1 L 1 J

Information in this document is subject to change without

notice and does not represent a commitment on the part of

Video Technology Ltd. It is against the law to copy this

colour computer's BASIC on cassette tape, disk, ROM, or

any other medium for any purpose without the written

consent of Video Technology Ltd.

© Video Technology Ltd. 1984

SECOND EDITION - 1984

All rights reserved. Reproduction or use, without express
permission, of editorial or pictorial content, in any manner, is

prohibited. No patent liability is assumed with respect to the

use of the information contained herein. While every precau-

tion has been taken in the preparation of this book, the

publisher assumes no responsibility for errors or omissions.

Neither is any liability assumed for damages resulting from
the use of the information contained herein.

© Copyright 1984 Video Technology Ltd.

CONTENTS

CHAPTER 1

13

INTRODUCTION

13 • To start basic

14 • This manual

15 • Variables

16 • Variable names

17 • Array variables

18 • Expressions and operators

18 • Arithmetic operators

20 • Logical operators

21 • Relational operators

22 • Functional operators

23 • String operations

CHAPTER 2

27 SOME BACKGROUND TO LASER 3000

BASIC PROGRAMMING
28 • Line format

29 • Constants

30 USING A PRINTER
WITH THE LASER 3000

30 • Text

31 • Graphics

33 • Other features

CHAPTER 3

39 LASER 3000 BASIC COMMANDS
AND STATEMENTS

40 • AMPERSAND COMMAND (&)

41 • CALL
42 « CHR$
43 • CLR
44 • CONT
45 • DATA
46 • DEF FN
47 • DEL
48 • DIM
50 « DRAW
53 Drawing shapes

53 Setting up the shapes

55 Entering a shape table

57 • The shape table

58 • Before using DRAW, XDRAW,
59 • END
60 • FLASH
61 • FOR...NEXT
64 • GET
65 • GOSUB... RETURN
67 • GOTO
69 • HCOLOR
71 • HGR HGR1 HGR2

HGR3 HGR4 HGR5
HGR6

72 • HIMEM
73 • HOME
74 • HPLOT
75 • HTAB
76 • IF...GOTO and IF... THEN...

78 • IN#
79 • INPUT

80 • INVERSE
81 • LEFTS

82 • LET

83 • LIST

85 • LOAD
86 • LOMEN
87 • MIDS
88 • NEW
89 • • NOISE

90 • NORMAL
91 • ONERR GOTO
93 • ON. . . GOSUB and ON. . . GOTO
95 • PAINT
96 • PEEK
98 • POKE
99 • POP
100 • PR #

101 • PRINT
103 • PRINT USING
109 • READ
110 • RECALL
111 • REM
112 • RESTORE
113 • RESUME
114 • RIGHTS

115 • ROT
116 • RUN
117 • SAVE
118 • SCALE

119 • SHLOAD
121 • SOUND
127 • SPC

128 • SPEED
129 • STOP
130 • STORE
131 • STR$
132 • SWAP
133 • TAB
134 • TEXT
135 • TROFF
136 • TRON
137 • USR
138 • VTAB
139 • WAIT
140 • WIDTH
141 • XDRAW

CHAPTER 4

145 LASER 3000 BASIC FUNCTIONS

146 • ABS
147 • ASC
148 • ATN
149 • COS
150 • EXP

151 • FRE
152 • INT

153 • LEN

154 • LOG
155 • POS

156 • RND
157 • SGN
158 • SIN

159 • SQR
160 • TAN
161 • VAL

GLOSSARY
165

APPENDICES
179

APPENDIX I

ERROR MESSAGES

179 • LASER 3000 BASIC ERROR MESSAGES
179 • LIST OF ERROR MESSAGES AND

EXPLANATIONS:

179 Can't continue

180 Division by zero

180 Illegal direct

181 Illegal quantity

181 Next without for

182 Out of data

182 Out of memory
183 Formula too complex

183 Overflow

183 Redim'd array

183 Return without Gosub
184 String too long

184 Bad subscript

184 Syntax Error

185 Type mismatch

185 Undef'd statement

185 Undef'd function

186 APPENDIX II

KEYS AND THE ASSOCIATED CODES

189 APPENDIX III

DISPLAY CHARACTER

191 APPENDIX IV

ASCII CHARACTER CODES

194 APPENDIX V
MATHEMATICAL FUNCTIONS

196 APPENDIX VI

SUMMARY OF BASIC COMMANDS

203 APPENDIX VII

LIST OF RESERVED WORDS IN

LASER 3000 BASIC

IBS

10

12

INTRODUCTION

The Laser 3000 Basic is a full implementation of the most

popular microcomputer programming language. Basic is run

through a program called an Interpreter.

This allows you to enter Basic commands and have them ex-

ecuted immediately.

TO START BASIC

Turn on your Laser 3000. The logo and the prompt sign (]

)

will appear on your display monitor. Immediately beside the

prompt sign there will be a flashing cursor.

The machine is now ready for you to enter Basic commands,

or a Basic program.

THIS MANUAL

The manual is divided into four sections:

• Some background information on Basic programming —

this chapter describes how the Laser 3000 handles its

implementation of Basic, as well as giving you general in-

formation on the strengths and limitations of the lan-

guage.

• Laser 3000 Basic Statements — this chapter presents all

the statements and commands used in Basic. It is arrang-

ed in alphabetical order.

• Laser 3000 Basic Functions — this presents all of the

Laser 3000's built-in Basic functions, and it is also

arranged alphabetically.

• Appendices and Index — these contain the ASCII and

keyboard character codes, error messages, and list of

reserved words.

This Basic manual completely describes the language as it is

implemented on the Laser 3000 computer.

However, it is not intended as a guide to learning the lan-

guage, although if you followed through the descriptions of

the commands and functions a number of times you would

get a fair grasp of it.

If you are completely new to Basic, there are a large number

of books available to help you learn it. Among them are:

BASIC from the ground up, by David E. Simon, Hayden,
1978.

BASIC, by Robert L. Albrecht, Leroy Finkel, and Jerry

Brown, John Wiley & Sons, 1973.

VARIABLES

Variables are the names you assign to values that change in

your Basic program.

The values can be given directly — initialised — as in this ex-

ample:

A = 63.999

Or they can take up new values as a result of the program's

execution. For instance, in the next example, the value of I

varies from 1 to 10.

10 For I
= TO 10

20 PRINT I

30 NEXT

When the Laser 3000 Basic starts running, all variables that

have no explicitly assigned values (as in tha first example) are

assumed to be zero.

15

VARIABLE NAMES

Laser 3000 Basic variable names must start with an

alphabetic letter. They can be up to 40 characters long, and

can represent either numbers or strings.

The variable names cannot be reserved words — for a list of

reserved words see the Appendices — nor can they have re-

served words embedded in them. For instance: ADIMMY
contains the reserved word DIM, and is not an allowable vari-

able; and DIMMY starts with the reserved word, and is not

permissible.

Reserved words include all the Basic commands, statements,

functions, and operator names.

Integer varibales are denoted by a percentage sign (%)

immediately following the variable names. This type of vari-

able can only contain integer values, for example:

I%= 1 234

String variables must always end with the dollar sign ($). This

declares to the Basic interpreter that it is dealing with a string

variables, and it allocates extra memory to handle it. For ex-

ample:

SENTENCES is a valid string variables, but SENTENCE —

without the $ sign at the end — is not.

ARRAY VARIABLES

An array is a matrix or table of values that is referenced by

the same variable name. The specific values are accessed by

subscripts which are used in conjunction with the array's

name.

The number of subscripts for an array is the same as the

number of dimensions for it, and are defined in the DIM
statement. For instance:

DIM AARRAY (10, 10, 10) sets up a three-dimensional array

where the subscripts for each dimension range from 0 to 10.

Thus it is equivalent to a table containing 1 1x1 1x11 or 1331

values.

DIM BARRAY (9) sets up a one-dimensional array with

single subscript which can range from 0 to 9. Thus it

equivalent to a table of 10 values.

17

EXPRESSIONS AND OPERATORS

An expression can be a constant, whether numeric or string,

or a variable, or a combination of variables, constants, and

operators which work together to produce a single value.

There are four types of operator:

• arithmetic

• logical

• relational

• functional

ARITHMETIC OPERATORS

These are the common mathematical operators, and they are

always performed in a set order of preference. They are listed

below in this order:

Operator Operation Example

A Exponentiation A A B
- Negation -A

V Multiplication, division A*B
A/B

+,- Addition, subtraction A+B
A-B

This order of operations can be changed by using parentheses,

as the expressions within parentheses are evaluated first.

Within parentheses, the above order is kept to. Some ex-

amples of how this is done follows:

Algebraic expression Basic expression Result

2+10-J-2

(2+10) -r 2

2+10/2 7

(2+1 0)/2 6

LOGICAL OPERATORS

These operators work on values according to their logical

states to proguce a result which is either one (1) or zero (0)

— "true" or "false". A non-zero value corresponds to a

"true” state, while a zero value corresponds to a "false"

state. The outcome of a logical operation is as shown in the

table following. The operators are listed in order of

precedence.

NOT

AND

OR

A
1

0

A
1

1

0

0

B

1

0

1

0

NOT A
0

1

A AND B

1

0

0

0

A B AORB
1 1 1

1 0 1

0 1 1

0 0 0

RELATIONAL OPERATORS

These operators share some similarity with the logical opera-

tors, in that their result is only ever one of two things - zero

(0) or positive one (+1)
- "false" or "true."

Like the logical operators, these relational operators can be

used to make decisions regarding program branching.

Operator Relation Example

- Equality A=B
<> Inequality AOB
< Less than A< B

> Greater than A > B

< = Less than or equal to A<= B

> = Greater than or equal to A>= B

The equal sign (=) is also used to assign a value to variable

(see LET statement in Chapter 3 of thi& manual.)

If arithmetic, relational, and logical operators are combined

in one expression, the order of precedence of evaluation is:

arithmetic, then relational, then logical.

FUNCTIONAL OPERATORS

The Laser 3000 has a number of built-in or "intrinsic"

functions which may be used in either direct or indirect

mode. These are described in Chapter 3.

Examples are TAN (A)
,
which calculates the tangent of angle

A, and LEFT$(X$,3), which returns the three leftmost

characters of string X$.

You can define your own functions using the DEF FN com-
mand. (see DEF FN command in Chapter 3)

STRING OPERATIONS

Two strings can be compared using the relational operators.

These work by comparing the numeric ASCII values of each

corresponding character of each string.

The conditions for equality or inequality depend on whether

the ASCII codes are higher or lower. Also, a short string is

relatively less than a long string.

Example:

10 IF “Laser" ^“Resal" GOTO 30

20 PRINT “Laser"

30 END
RUN
Laser

Two strings can be combined - concatenated - using the plus

(+) operator.

Example:

50 X$= "Laser
"

60 Y$ = "3000"

70 PRINT X$+Y$
RUN
Laser 3000

CHAPTER

SOME BACKGROUND TO LASER
3000 BASIC PROGRAMMING

SOME BACKGROUND TO LASER 3000
BASIC PROGRAMMING

When Basic is started, it displays the prompt "] This means

that it is ready to accept commands from the keyboard.

At this command level, it can be used in either of two modes:

direct — which is when you enter a command and have

it executed immediately.

indirect — which is when command lines are started with

line numbers, and a program is built up for

later execution. Programs are started by enter-

ing the RUN command.

LINE FORMAT

In direct mode, the commands and functions are entered as

laid out in this manual. See the two chapters after this one
for these formats.

In entering a program, the line is laid out like this:

nnnnn Basic statement (.Basic statement . . .) Where nnnnn

is the line number.

The parentheses indicate options. The length of your line is

limited to 239 characters, and a line is always finished when
you hit RETURN.

Hitting RETURN adds a non-printing carriage return

character at the end of a line. The basic interpreter takes this

carriage return as indicating the end of a program line.

The line numbers must be in the range of 0 to 63999. They

relate to the order in which a Basic program is stored in

memory, and the interpreter always executes a program in

the sequence of the line numbers (unless the program

branches otherwise.)

CONSTANTS

As their name implies, these are values that do not change. In

Basic they can be either numeric or string values. Some string

constants are:

”$64,000”

"May the Force be with you"

There are two types of numeric constant.

1. Integer constants

Whole numbers in the range from -32767 to +32767.

2. Floating point constants

Positive or negative numbers that are represented in

exponential form. These are made up of three parts: the

fixed point part, in decimal form; the E which signifies

exponentiation and the exponent, which must be an

integer. The range of values for floating point constants is

from 1 E-38 to 8.5E + 37.

Example:

256. 1024E-7 = .00002561024

4096E7 = 40960000000

29

USING A PRINTER WITH THE
LASER 3000

The Laser 3000 has a built-in printer interface and a ROM-
based printer driver.

You can use the Laser 3000 with a printer which has a

standard Centronics interface port to print out textual

material.

If you have a Epson type dot - matrix graphics printer, you

can also get hard copy of the graphical displays.

TEXT

Steps for using the printer:

1 Connect the interface cable between the Laser - 3000
and the printer

2 Switch on the Laser 3000 before switching on the printer.

3 Initialise the printer by typing

• PR « 1 if you are in Basic

• 1 CTRL-P if you are in the Kernel

4 From now on, any character displayed on the screen

will be printed out by the printer.

5 To stop this, type

• PR«0 if you are in Basic

• 0 CTRL-P if you are in the Kernel

GRAPHICS

Any of the 6 graphic pages of the Laser 3000 — from HGR1
to HGR6, — can be printed out to a Epson - type dot - matrix

printer by using the Basic command - PRINT SCREEN.

There are two ways of telling the computer which graphic

page is to be printed:

• One is to use a Basic command to refer to this page be-

fore using PRINT SCREEN.

Example:

10 REM REFER TO WHICH PAGE
20 HGR
30 HCOLOR = 7

40 REM DRAW A CIRCLE IN THIS PAGE
50 DRAWSCIRCLE (140, 96), 50

60 REM PRINT OUT THIS PAGE
70 PRINT SCREEN
80 END

Note that PRINT SCREEN command will automatically

select and unselect your printer. You do not have to type

PR# 1 and PR #0.

• The second method which can be used to tell PRINT
SCREEN which graphic page to print out is by Poking a

value into a zero page location before using this com-

mand.

The address of this zero page location is $E6 (# 230)

LOCATION DATA

(

U

230) #32 #64 #34 #66 #33 #65

($E6) $20 $40 $22 $42 $21 $41

page to be printed HGR1 HGR2 HGR3 HGR4 HGR5 HGR6

(Note: tt implies a decimal value, and $ implies a hexdecimal

value.)

Example:

5 REM LOAD A PICTURE INTO HGRI'S MEMORY
10 PRINT CHR$(4); "BLOAD PICTURE, A$2000"
15 REM TELL 'PRINT SCREEN' TO PRINT HGR1
20 POKE 230, 32

25 REM PRINT HGR1
30 PRINT SCREEN
40 END

OTHER FEATURES

If you wish to obtain more sophisticated graphics print outs,

the command PRINT SCREEN may not be adequate, and

you must perform some tricks. However, they are quite

simple.

The procedures are:

1 Initialise the printer by typing.

• PRttl if you are in Basic

• 1 CTRL-P if you are in the Kernel

2 Get your graphics ready either by drawing it now or by

loading a binary image from disk to the corresponding

graphic memory.

3 Poke two locations in order to get the desired page and

effects — more will be mentioned later.

4 Type CTRL-Qto start printing out the graphics.

5 After the picture has been output, disable your printer

by typing.

• PR#0 if you are in Basic

• 0 CTRL-P if you are in the Kernel

Note: The sequcence of steps 1 and 2 is not important.

The two locations are:

Hexadecimal Decimal

S6F9 (#1785)

S779 (#1913)

#1785 (S6F9) - Poke values into this location to select

different graphics-modes

HGR page HGR1 ,

2

HGR3, 4 HGR5,6

Poke 1 785

(S6F9) with

00($00) 2(S02) 1 (SOI)

1913 ($779) — each bit of this one-byte location, when set

(=1), is used to select the many features

available for printing graphics.

bit 6 5 4 3 2 1 0

Select enlarge Inverse EOR OR AND print print

option printing printing page 1&2 page 1&2 page 1&2 page 2 page 1

NOTE: 1. Enlarge printing is available only in low resolu-

tion and bit image graphics.

2. When both bit 0 and bit 1 are set to 1, the

primary page will be printed on the left half and

the secondary page will be printed on the right

half of the paper.

3. Bit 7 must be set to zero.

Four examples on the use of these locations are:

Example

1.

PRINT HGR3 in inverse mode
(a) Poke 1785, 2 to select HGR3,4
(b) Poke 1913, 33

Because: ($779)

=
(# 1913)

= $21
= #33

0 0 1 0 0 0 0 1

inverse Page 1 of 560 X

192 GR mode

HGR3.

2.

PRINT HGR2 in inverse and enlarged mode.

(a) Poke 1785, 0 to select HGR 1,2

(b) Poke 1913, 98

Because: ($779)

= (#1913)

= $62
= #98

0 1 0 0 0 1 0

enlarge

inverse

*

page 2 of 280 X 192

compatible graphics

mode = HGR2

3.

PRINT HGR1 ORed with HGR2 in enlarged mode.

(a) Poke 1785, 0 to select HGR1 , or 2
(b) Poke 1913, 73

Because: ($779)

= (#1913)

= $49
= #73

0 1 0 0 1 0 0 1

t
enlarge I For AND. OR. EOR

J Functions the re-

suiting picture will

be in page 1

.

4. PRINT HGR3 AND HGR4 in inverse mode.

(a) Poke 1 785, 2 to select HGR3, or 4

(b) Poke 1913, 37

Because: ($779)

= (#1913)

= $25
= #37

0 0 1 0 0 1 0

inverse AND

same reason as in

example 3.

CHAPTER

LASER 3000 BASIC
COMMANDS AND STATEMENTS

LASER 3000 BASIC
COMMANDS AND STATEMENTS

All of the Laser 3000's Basic commands and statements are

given in this chapter, with each laid out as follows:

Purpose: Tells what the command or statement is used

for.

Format: Shows the correct layout for the command or

statement. You will be able to follow the layout

if you keep the following rules in mind:

1. Words given in capital letters must be input

exactly as shown.

2. You must enter any items given in lower

case italic letters.

3. Items indicated in square brackets are optional

[optional]

.

4. Items followed by three periods.. .mean that

the particular item may be repeated as often

as you like.

5. Quotation marks, commas, full-stops,

hyphens, semicolons, and equal signs must

be used as indicated.

Comments: Describes the circumstances in which the

command is used.

Examples: Gives sample programs or program sections in

which the command or statement is used.

AMPERSAND COMMAND (&)

Purpose: To jump into a machine language command

starting at hex location $3F5.

Format: &

Comments: A machine language subroutine must be placed

at $3F5 before using this command, otherwise

an unexpected result may occur, which might

even destroy your program.

Example: CALL -151

3F5 : 4C00C3
CTRL -

C

&
]

You enter the system kernel and place a JUMP
machine instruction at location $3F5. Executing

the AMPERSAND COMMAND will direct con-

trol to address SC300 where the 80 column dis-

play firmware is located.

CALL

Purpose: To use an assembly language subroutine.

Format: CALL expression

Comments: This statement is one means of transferring

program flow to an assembly language sub-

routine.

expression is the entry address of the machine

language routine, and it must be in decimal.

Example: 300 ASSEM - 64600

310 CALL ASSEM

RUN

This CALL returns control to the ROM-based

Laser 3000 kernel, which then clears the screen,

and displays the prompt in the HOME position.

CHR$

Purpose: Converts an ASCII code to its equivalent

character.

Format: CHR$(r?)

Comments: This operation returns the single character

corresponding to the number n, which must be

between 0 and 255.

The ASCII characters codes are listed in

Appendix IV.

Examples: PRINT CHR$ (81).

The following example would print all the upper
case letters of the alphabet (ASCII codes 65
through 90).

10 FOR I =65 TO 90
20 PRINT CHR$(|);
30 NEXT I

CLR

Purpose:

Format:

Comments:

Example:

To clear all variables, arrays and strings

CLR

All variables will be cleared to zero.

CLR

CONT

Purpose:

Format:

Comments:

Examples:

To restart a program running again after it has

been halted.

CONT

The program resumes at the next instruction

after the break occurred.

CONT is often used in debugging a program, in

conjunction with STOP. Once the program has

been halted, you can examine and change

variable in the program, and then use CONT to

resume it. CONT may not work if you change

the program while it is halted.

See CONT used in the example for the STOP
statment.

DATA

Purpose:

Format:

Comments:

Examples:

To store constant numbers and string values in

your program so they can be used in conjunct-

ion with the READ statement.

DATA constant (,constant)...

DATA statements are non executable and may
be placed anywhere in the program.

No numeric or string expressions can be used in

the DATA statement. The constant may be a

number or a string. There is no need to enclose

a string with quotation marks but any

spaces in between are ignored.

The numeric constants may be in any format,

i.e., fixed point, floating point or integer.

The variable type given in the READ statement

must agree with the corresponding constant in

the DATA statement.

See examples for the READ statement.

DEF FN

Purpose: To define and name a function that is written by

the user.

Format: DEF FN name (real variable) = expression.

Comments: The name is exactly the same as a variable name.

A user defined string function is not allowed. The
real variable is the variable that will be used

when the function is evaluated.

The expression can be as long as a line (239
characters long).

If you need to program functions that require

more room than that, you should implement
your function as a subroutine.

Examples: 10 GEE = 9.8

20 DEF FNDIS (T) = GEE *T A 2/2

30 INPUT "Time?"; T
40 PRINT "Distance is" ; FNDIS (T)

This would calculate the distance that a body
has fallen after T seconds, using the function

DIS which is derived from the formula s=% gt2
,

where s is distance, g the acceleration due to

gravity, and t the time that has elapsed since the
object was dropped from a stationary position.

46

DEL

Purpose: Removes program lines.

Format: DEL line number 1 , line number 2

Comments: This deletes the lines from line number 1 to line

2, inclusive.

Example: DEL 10, 110

This removes all the lines between 10 and 110,

including lines 10 and 1 10.

DIM

Purpose: This sets the maximum subcripts for a variable

and allocates enough storage to accomodate

them.

Format: DIM variable (subscripts) [, variable (subscripts),

...]

Comments: When the Laser 3000 Basic interpreter encoun-

ters a DIM statement, it initialises all the ele-

ments of the array to zero, if it is a numeric

array.

For a string array, all elements are initially null

strings (i.e. empty strings). However the length

of each element can be different as a result of

program execution.

If an array is used in a Basic program without a

corresponding DIM statement, the interpreter

assumes the value of the subscript to be 10.
\

The maximum number of dimensions and

maximum number of elements in each dimens-

ion depend on the amount of free memory in

the system.

Examples: 10

20

30

40

50

60

70

80

90

DIM A (10, 10)

FOR I
= 1 TO 10

FOR J = 1 TO 10

IF I = J THEN A (l,J)= 1

PRINT A (I, J);"

NEXT J

PRINT
NEXT I

END

This will build up an array whose diagonal

elements are all ones, with the rest of the

elements remaining zero.

DRAW

Purpose: To draw geometric shapes

Format: DRAW shape (shapeparameters,)

Comments: This command can be used to draw the fol-

lowing shapes, whether solid (S) — coloured in;

or hollow (H) — in outline:

. CIRCLES -SCIRCLE and HCIRCLE

. SQUARE - SSQUARE and HSQUARE
The shapeparameters for SCI RCLE and

HCIRCLE are:

DRAW SCI RCLE (x,y), r [, c, sr, er] - where
x is the x co-ordinate of the graphics screen, /
is the y co-ordinate of the screen, r is the length

of the major axis of the ellipse to be drawn, c is

the circularity of the ellipse and c must be in the

range 0 to 1 . When c =1 a circle is drawn, and sr

is the start radian, and er is the end radian and

must be greater than sr. If c, sr and er are not

specified, the default values are c =1
,
sr =0,

er =2tt. Also note that the drawn ellipse can be

orientated in any direction by using the ROT
command before the DRAW SCI RCLE or

DRAW HCIRCLE command. The same
shapeparameters apply to HCIRCLE.

The final three are optional. If they are includ-

ed, an ellipse is drawn, its flatness being deter-

mined by the circularity shapeparameter c.

In low resolution graphics and bit image graphics

modes, the x co-ordinate can range between 0

and 279, whereas in double resolution graphics,

x ranges between 0 and 559 while the y
co-ordinate can range between 0 and 191 in all

graphics modes.

The shapeparameters for SSQUARE and

HSQUARE are:

DRAW HSQUARE (XI, Y1 TO X2, Y2 [TO
X3, Y3 ... J

)

where each pair of co-ordinates

define the diagonal corners of the square (the

Laser 3000 works out where the third and
fourth corners should go).

The x and y co-ordinates can have the same

values as in DRAW SCIRCLE and DRAW
HCIRCLE command. Exactly the same shape-

parameters apply to DRAW SSQUARE.

Example: 10

20

30

40

HGR5
HCOLOR = 3

DRAW SCIRCLE (140, 96), 50

END

The final three are optional. If they are includ-

ed, an ellipse is drawn, its flatness being deter-

mined by the circularity shapeparameter c.

10 HGR5
20 HCOLOR = 4

30 DRAW SSQUARE (0, 0 TO 10, 10)

40 END

This draws a solid yellow coloured square with

the point (0, 0) diagonally opposite to the point

(10 ,
10).

Drawing shapes

In any of the Laser 3000's graphics modes, you can draw and

move around free-form shapes.

The general graphics commands on the Laser 3000 i.e.

HP LOT, DRAW only give static shapes. With shapes you
define yourself, you can animate your creations, either

moving, rotating, or changing their sizes.

Setting up the shapes

The first step is to sketch on paper the shape you want, and

then break this down into a series of directed lines (i.e.

vectors). For instance, a rectangle could be broken down like

this:

Figure 1. Vectors for a rectangle

53

As the vectors can only point to either the left or right or up

and down, diagonal lines must be approximated by a number

of them which, taken together, give the impression of a dia-

gonal line. This is shown below:

Figure 2. Vectors for a diagonal line

Entering a shape table

Once you have defined your shape, and broken it down into

vectors, the next step is to convert the vectors into binary

codes so that your Laser can accept them and reproduce the

shape on the display later.

Two types of vector are possible: 1. move and plot; and 2.

move but do not plot.

For each of these two basic types there are four directions:

up, down, left, and right. In ail there are eight shape vectors,

and they have the following three-bit binary codes:

000 Move Up

001 Move right

010 move down

011 move left

100 move up and plot

101 move right and plot

1 10 move down and plot

111 move left and plot

For instance, the diagonal line can be represented as follows,

starting from the left:

100 move up and plot

101 move right and plot

1 00 move up and plot

101 move right and plot

101 move right and plot

101 move up and plot

The shape table in the Laser's memory is made up of separate

bytes, which means that only two complete vectors - of three

bits each - and an incomplete vector - of only two binary bits

- can be stored in each byte, as there are only 8 bits within a

single byte.

55

These incomplete vectors are movement without plotting,

and they are the only ones possible in this part of the shape

table byte. As this is the case, unless you can arrange

your shape such that the non-plotting vectors are the very

third vector in it, you should set these two bits to zero (i.e.

unused).

To create a triangle, your shape definition will look some-

thing like:

3rd VECTOR

(UNUSED)

00

00

00

00

00

00

00

00

00

00

00

2nd VECTOR

101

101

101

101

101

101

101

111

111

111

111

1st VECTOR HEX DATA COMMENT

100

100

100

100

110

110

110

110

1 1

1

111

111

2C

2C

2C

2C

2E

2E

2E

3E

3F

3F

3F

move up and right with plot

move up and right with plot

move up and right with plot

move up and right with plot

move down and right with plot

move down and right with plot

move down and right with plot

move down and left with plot

move left and left with plot

move left and left with plot

move left and left with plot

•—>•

• —v* •—>•

t l
• • —»•

Figure 3. Vectors for a triangle

THE SHAPE TABLE

In the previous pages, you have learned how to create a single

shape definition as a whole shape table.

But, in fact, a shape table can consist of more than one shape

definitions so that more than one shape can be manipulated

by using the DRAW, XDRAW, ROT and SCALE commands.

Figure 3 shows the general format of a shape table. You can

see that the first few bytes of the shape table are used to tell

the Laser how many shape definitions are within the shape

table, and where these shape definitions are, relative to the

starting address of the shape table. The last byte of your

shape definition must be zero to signify the end of the shape

table.

Start = S Byte S-MD

1

2
+3

+4

Index — +5

2n
* +2n+1

S+D1

S+D2

Shape _
Definitions

n (OtoFF) 1

Unused

Lower 2 Digits

Upper 2 Digits

Lower 2 Digits

Upper 2 Digits

• • •

• • •

• • •

Lower 2 Digits

Upper 2 Digits

First Byte

• •

Last Byte-00

First Byte

•

Last Byte-00

• •

• •

First Byte

• •

Last Byte-00

y

y

y

}

}

l

Total Number of Shape Definitions

D1 : Index to First Byte of Shape

Definition #1 ,
Relative to S

D2 Index to First Byte of Shape

Definition #2, Relative to S

Dn: Index to First Byte of Shape

Definition #n. Relative to S

Shape Definition #1

Shape Definition #2

Shape Definition #n

Figure 3 General Format of a Shape Table.

BEFORE USING DRAW, XDRAW, ROT AND SCALE

Before you can use any one of the following commands:

DRAW, XDRAW, ROT and SCALE, make sure you have

done the followings:

1 Entered the shape table

2 Told the Laser where the shape table is

Item 1 has been discussed in the previous pages. Item 2 is a

very simple task; just enter the starting address of the shape

table into hex location $E8 (lower two digits) and SE9
(upper two digits).

For example, if your shape table resides from address $1000
on, you can enter the Laser's kernel (CALL-151) and type

the following E8:00 10.

Type CTRL—C and [RETURN] to go back to Basic,

Laser 3000 is now ready to interpret your shape commands.

e.g. DRAW 1 AT 140, 96
draw shape 1 at screen co-ordinates (140, 96)

e.g. SCALE = 2

ROT = 32

DRAW 2 AT 40, 40
FOR D = 1 to 2000 : NEXT D
XDRAW 2 AT 40, 40

draw shape 2 in reverse direction (i.e. rotated 180°)
and in double size at (40, 40). Then wait for a while and
clear the shape from display.

END

Purpose: Finishes program excution and returns you to

command level.

Format: END

Comments: This command may be placed anywhere in your

program — though it may not be all that useful

as the first statement of your program.

END is the most orderly way to stop your Basic

program when it has done what you require.

This is because, unlike the similar command
STOP, it does not cause a BREAK message to

be displayed.

However, END is not essential at the end of a

Basic program — you will be returned to com-

mand level when it finishes anyway.

Example:

60 IF FIN<^0 THEN GOTO 80

70 END
80

In this example, if FIN is less than zero, then the

program branches to line number 80.

If FIN is equal to or greater than zero, then the

END command is executed, and the program

terminates.

59

FLASH

Pupose: To cause all computer messages to alternate

between character and background colour.

Format: FLASH

Comments: FLASH causes the display to alternate between

NORMAL mode and INVERSE display mode.

FOR...NEXT

Purpose: Loops around a group of instructions a specified

number of times.

Format: FOR variable=n TO m [STEP /]

NEXT [variable] [, variable]. .

Comments: The variable — which is optional with the NEXT
— acts as a counter for the number of times the

instructions within the loop surrounded by the

FOR and NEXT are executed.

n is the initial value of the counter, m is the final

value of the counter, and i is the step or

increment.

All the instructions in the loop are executed

down to the NEXT.

Then the counter is incremented by /'. (If you do

not give a value for i, the Laser 3000 Basic

interpreter assumes / is one.)

Then a check to see whether the value of the

counter is greater than m. If it is not, the loop is

gone through again.

If it is greater than m, then the program con-

tinues with the instructions that follow the

NEXT.

The value of/ can also be negative, in which case

it is as though m and n are exchanged from their

positive roles.

In other words, n is greater than m, and the

counter is reduced each time through the loop

until it is less than m.

FOR. ..NEXT loops can be written inside each

other, or nested. In these cases, the variable

names must be different, and each FOR must be

matched with its corresponding NEXT.

If the variable for the NEXT is not given, the

interpreter assumes that the NEXT refers to the

FOR. ..directly above it.

Alternatively, one NEXT can serve a number of

FORs, when it is given as NEXT variab/el

,

variable2, variab/e3 etc.

Examples: 10 FOR /V=2 TO 100 STEP 2

20 PRINT N/2
30 NEXT

This would print out the numbers from one to

50

100 FOR AM00 TO 2 STEP -2

110 PRINT N/2

120 NEXT

This would also print out the numbers between

one and 50, but in reverse order to the first

example.

200 FOR K=1 TO 2

210 FOR L=1 TO 5

220 PRINT K*L;"

230 NEXT L, K

This would print out the numbers:

1 234 52468 10

GET

Purpose: Reads a character from the keyboard without

echoing it on the screen. No carriage return is

necessary.

Format: GET variable

Comments: The variable may be a string or arithmetic vari-

able.

When the program expects an arithmetic variable

and an non-numeric key is pressed, the "Syntax
error" message will result.

Example: 10 GET AS
20 C$ = C$ + AS
30 PRINT C$
40 GOTO 10

GOSUB...RETURN

Purpose: To direct the program flow into, and to return

from, a subroutine.

Format: GOSUB linenumber

RETURN

Comments: A subroutine may be called any number of times

from within a program, and it is possible to call

another subroutine from within a subroutine,

which, in turn, may call another subroutine.

Nesting of subroutines can be 25 levels deep.

The linenumber needed in the GOSUB state-

ment is the first line of the subroutine.

The RETURN statement terminates the execut-

ion of the subroutine, and returns the inter-

preter to the line immediately following the

most recent GOSUB statement.

However, there is no way that the interpreter

can distinguish between a subroutine and

ordinary program lines. So, to avoid executing

the subroutine when it is not required, you

should put a GOTO, STOP, or END in the line

before it starts.

65

Example:] 10 INPUT A
] 20GOSUB 50

] 30 PRINT A
] 40 END
] 50 IF A <100 THEN 80

] 60 A=A+50
] 70 RETURN
] 80 A=A+200
] 90 RETURN
] RUN
? 40

240

] RUN
? 170

220

GOTO

Purpose:

Format:

Comments:

To direct the program flow to another part of

the Basic program.

GOTO linenumber

GOTO takes your Basic program out of its

normal sequence — one line following the other

— and continue execution at a point either many
lines ahead, or many lines behind the line con-

taining the GOTO.

If the line the GOTO refers to is a REMark or

DATA line — which is not executable, then the

instruction exe' 'ted is the next executable line

after Unenumbet

.

GOTO can be very handy in debugging pro-

grams. You can use it in direct mode to enter a

program at a certain point, rather than having

the program run through from its beginning.

Example:] 10 INPUT A$
] 20 B$=B$+A$

] 30 PRINT B$

] 40 GOTO 10

] RUN
? T
T
?H

TH
? I

THI

?S
THIS
?

HCOLOR

Purpose:

Format:

Comments:

To set the colour of subsequently plotted

graphics.

HCO LO R = colour code

For low resolution and double resolution

graphics, the colours given by colour code are as

follows:

Code

0

1

2

3

4

5

6

7

Colour

black

green

magenta

white

black

red

blue

white

For bit image graphics, the colour codes become:

Code

0

1

2

3

4

5

6

7

Colour

black

green

magenta

cyan

yellow

red

blue

white

69

Example:] 10 HGR5
] 20 FOR 1

= 0 TO 279

] 30 HCOLOR = 1/40+ 1

] 40 HPLOT 1,0 TO 1, 191

] 50 NEXT 1

Running this program and you will see 7 coloured

vertical bars.

HGR
HGR3
HGR6

HGR1
HGR4

HGR2
HGR5

Purpose: To set up the graphics modes.

Comments: HGR sets up the Laser 3000's mixed text and

low resolution grahics mode, which has a re-

solution of 280 pixels by 160 pixels and four

lines of text at the bottom of the screen.

The command will clear the screen, displays the

primary graphic page. The cursor will be placed

just under the graphics screen, i.e. the third line

from the last on the text screen.

HGR1 and HGR2 have much the same effect,

except that the resolution becomes 280 by 192.

Text display is not available in this mode. HGR1

displays the primary page and HGR2 displays

the secondary page.

HGR3 and HGR4 are the double resolution

graphics set-up commands. The resolution in

this mode is 560 by 192. HGR3 displays the pri-

mary page of this mode, and HGR4 displays the

secondary page.

The final graphics set-up commands are HGR5
and HGR6, which allows you to use the Laser

3000 's 280 by 192 bit-image graphics mode.

HGR5 displays the primary page and HGR6
displays the secondary page.

71

HIMEM

Purpose: To set the highest memory location available to

a Basic program.

Format : HIMEM: address

Comments: This command is used to protect the area of

memory above a program for data or machine

language routines.

The address must be in the range —65535 to

65535.

HOME

Purpose: To clear screen and position the cursor at the

upper left corner of the display screen.

Format: HOME

Comments: Characters outside the display window will not

be cleared.

Example:]
HOME

All characters in the display window will be

cleared. The cursor returns to the home position.

Characters beyond the display window remain

unchanged.

73

HPLOT

Purpose: To draw either lines or dots.

Format: HPLOT x1,y1
HPLOT TO xl, yl

HPLOT xl,y1 TO x2, y2 [,J0x3,y3]

Comments: The first form of this command causes a dot to

be plotted at the position given by xl, y 1 co-

ordinates.

The second form causes a line to be drawn from

a previously specified plotted dot to the posit-

ion given by thexl, y 1 co-ordinates.

The third form of HPLOT draws lines from

point to point as given by the pairs of (x,y)

x ranges from 0 to 279 in both low resolution

and bit image graphic modes and 0 to 559
in double resolution graghics mode, y ranges

from 0 to 191 for all graphic modes.

Example: 10 HGR3
20 HCOLOR = 1

30 HPLOT 0,0 TO 559,191

This program will plot a green line from the

top left-hand corner to the bottom right-hand

corner of the screen.

HTAB

Purpose: To move the cursor a given number of places to

the right of the left margin.

Format: HTAB (displacement)

Comments: displacement ranges from 1 to 255. If displace-

ment is greater than the display window width,

then the cursor simply wraps round to the left-

most of the same line.

Example: 10 HOME
20 HTAB (20)

30 PRINT "20 HORIZONTAL DISPLACE-
MENTS”

75

IF...GOTO and IF. ..THEN...

Purpose:

Format:

Comments:

To direct program flow depending on the result

of an evaluation.

IF expression GOTO linenumber

IF expression THEN statement

If the expression is true, the statement following

GOTO or THEN is executed, otherwise it is

ignored and the program continues with the

next line.

Examples:] NEW
] 10 INPUT A,B

] 20 IF A<B GOTO 50

] 30 PRINT A;" IS LARGER THAN B

] 40 GOTO 10

] 50 PRINT A;" IS SMALLER THAN”; B

] 60 GOTO 10

] RUN
7 37,22

37 IS LARGER THAN 22

? 40, 90

40 IS SMALLER THAN 90

In statement 20, A is compared with B. If A is

smaller than B, statement 50 will be executed;

otherwise program continues to statement 30.

]
NEW

] 10 INPUT A
] 20 IF A >B THEN B=A

] 30 PRINT B; "IS THE LARGEST”

] 40 GOTO 10

] RUN
7 37

37 IS THE LARGEST
7 40

40 IS THE LARGEST

The above program will print out the largest

number so far entered.

77

IN#

Purpose: To accept input from a selected input device.

Format : IN# device no

Comments: The number given in device no must be

between 0 and 8. This number determines which

device your Laser 3000 will expect input from.

Example: IN#0
This command changes input from a peripheral

device to the keyboard.

IN# 8

This command enables you to redefine the

function keys as follows:

1 .

2 .

3.

4.

IN# 8 RETURN
press the function key

new key sequence

ESC ESC

INPUT

Purpose: Allows you to enter values from the keyboard

while a program is executing.

Format: INPUT [''prompt'';] variable 1 [, variable 2 . . .]

Comments: When the Basic interpreter comes across an

INPUT statement it displays either the "prompt

string", or it just displays a question mark if the

"prompt string" has not been included in the

statement. Only one prompt string is allowed

and it must appear immediately after INPUT.

Example:] 10 INPUT <ii<
] 20 INPUT B

] 30 PRINT <ii<

] RUN
A = 10

? = 20

A = 10 B = 20

1

79

INVERSE

Purpose: To reverse the character and background colour

of all characters displayed.

Format: INVERSE

Comments: If a TEXT character, background, border

command was executed, INVERSE sets all

computer message to have background colour

\n\th character background, otherwise, all com-
puter message will have dark characters on a

white background.

Example:] TEXT RED, GREEN, BLUE
] INVERSE

All characters will be in green formed by a red

rectangle.

LEFTS

Purpose:

Format:

Comments:

Examples:

Returns a specified number of characters from

the left-hand side of a character string.

LEFT$(sfr/>70S/7)

The number n must be between 1 and 255, and

if it is greater than the length of strings, then

the LEFTS function will return the entire

string strings to the program.

LEFTS works similarly to the RIGHTS and

Ml DS string functions.

] 10 A$=" LASER 3000"

] 20 BS= "IS"

] 30 PRINT LEFTSIBS, 1)

] 40 PRINT LEFTS(AS, 10)

] RUN
I

LASER 3000

]

81

LET

Purpose: To assign a value to a variable.

Format : [LET] variable= expression

Comments: LET is an optional statement, and is becoming

less frequently used.

The equal sign (=) has exactly the same effect as

LET.

The expression can be either a constant or an

arithmetic expression.

If you attempt to assign a numeric value to a

string variable, then the message "Type mis-

match" will be displayed.

Examples:] 10 LET A= 10

] 20 PRINT A
] 30 LET B= 40

] 40 LET B= A
] 50 PRINT B

] RUN
10

10

LIST

Purpose: To display on the screen the Basic program that

is currently in memory.

Format: LIST [linenumber [Jinertumber]]

Comments: If the linenumber (s) is (are) omitted, then LIST

causes the entire program to be displayed.

If the first linenumber — is used, then LIST will

display the program from that line to the end of

the program.

If both are used, then LIST displays only those

program lines in the range given by them. It also

includes these lines.

If just linenumber is used, then LIST shows the

lines from the first up to and including line-

number.

In all cases when you use linenumber, it must be

less than 63,999.

If you use just linenumber by itself, then just

that line — if it exists — will be displayed.

83

Examples:] 10 REM LASER 3000 PRESENTS

] 20 REM LASER BASIC

] 30 REM EASY TO USE

] 40 REM AND MORE....

] LIST

10 REM LASER 3000 PRESENTS
20 REM LASER BASIC
30 REM EASY TO USE
40 REM AND MORE....

] LIST 30

30 REM EASY TO USE

I LIST 20, 40

20 REM LASER BASIC
30 REM EASY TO USE
40 REM AND MORE

] LIST -30

10 REM LASER 3000 PRESENTS
20 REM LASER BASIC
30 REM EASY TO USE

LOAD

Purpose: To load a program from a data cassette tape into

the computer.

Format: LOAD

Comments: This command is the opposite to SAVE, which

stores a program on to a cassette tape. LOAD
does not check wether your cassette tape unit is

playing or recording, but, it does cause the Laser

3000 to issue a "Beep" at the start of LOADing,

and to issue another at the end. Your cassette

player should be in play mode when you use

LOAD, and record mode when using SAVE.

LOMEM

Purpose: To set the lowest memory location available to a

Basic program.

Format: LOMEM: address

Comments: This command is used to protect the area of

memory below a program for data or machine
language routines.

The address must be in the range —65535 to

65535.

MIDS

Purpose:

Format:

Comments:

Example:

To return a specified number of characters from

within a given string.

MID$(X£/[,/])

Both i and / must be between 1 and 255. MID$
return / characters of string X$ starting from the

/ th character.

If / is not specified, then MID$ has the same

effect as the RIGHT$(X#,/) function.

Also, if / is greater than LENfXSA then a null

string is returned.

| 10 X$=''Program in”

) 20 Y$=" Fortran Basic Cobol"

| 30 PRINT X; MID$ (Y$, 11,8)

|
RUN

|
Program in Basic

87

NEW

Purpose: Clears the current program from memory and

clears all variables associated with it.

Format: NEW

Comments: This command is the most commonly used to

free memory before entering a new program into

the Laser 3000.

Basic returns to command level after executing

NEW

Example: NEW

NOISE

Purpose: To produce noise from within programs

Format: NOISE periodicity
,
duration [, volume,

frequency control]

Comments: The first parameter — periodicity can be equal

to either 1 or 2.

When it equals to 1, white noise will be pro-

duced. When it equals to 2, periodic noise will

be produced.

Duration can range from 1 to 255, with each

unit being 1 video frame time, i.e. 1/50 or 1 /60s.

Volumn can range from 0 to 15, with 15 being

the loudest.

Frequency control equals to 1, 2, 3 or 4. This

parameter affects the tone of the produced

noise.

Example: NOISE 1, 120, 15

Produce a WHITE NOISE for about 2 seconds.

NORMAL

Purpose: To return the video display from either inverse

or flashing modes to the default mode.

Format: NORMAL

Comments: If a TEXT character, background, border com-

mand was executed, NORMAL sets the display

with character colour and background back-

ground. Otherwise, NORMAL sets the display

with white characters on a dark background.

ONERR GOTO

Purpose: To avoid halting the program when an error is

encountered.

Format: ONERR GOTO Unenumber

Comments: Using this statement facilitates error trapping, as

it can direct the program to a routine (an error

handling foutine) dealing with error conditions

that may arise in your program.

The RESUME statement can be used to come

out from the error trapping routine.

The ONERR GOTO statement may be located

anywhere within the program, but it is good

practice to have it as early as possible, as this

statement must be executed before the occur-

ance of an error to avoid program interruption.

] 10 ON ERR GOTO 100

] 20 GET A
] 30 PRINT A
] 40 GOTO 20

] 100 PRINT "INTEGERS ONLY”
] 110 RESUME
] RUN
1

1

2

2

A
INTEGERS ONLY
3

3

ON...GOSUB and ON...GOTO

Purpose: To direct the program flow depending on the

value of a expression.

Format: ON expression GOSUB linenumber 1 [, line-

number 2 ... 7

ON expression GOTO linenumber 1 [, line-

number 2 ... 7

Comments: The value of the expression must always be an

integer less than or equal to 255. When it is

evaluated, it directs program flow to the cor-

responding line number in the list following

either the GOSUB or the GOTO statements.

For instance, if the expression comes to five,

then the program will branch to the fifth line

number, and if it comes to nine, it will go to the

ninth line number.

93

Example: 10 INPUT X
20 ON X GOSUB 100, 200, 300

30 END

100 PRINT "Start of subroutine for X=1"
150 RETURN
200 PRINT "Start of subroutine for X=2"
250 RETURN
300 PRINT "Start of subroutine for X=3"
350 RETURN
] RUN
? 2

Start of subroutine for X = 2

PAINT

Format: PAINT (x,y), colour, boundary.

Purpose: To fill a closed region on the screen with a

selected colour.

Comments: Starting from point(x,K), the region surrounded

by the boundary colour is filled with the defined

colour.

PAINT can be invoked only in bit image graphics
mode with x in the range 0 to 279, y in the
range 0 to 191, and both colour and boundary
in the range 0 to 7.

The colour codes are as follows:

0 black

1 green

2 magenta

3 cyan

4 yellow

5 red

6 blue

7 white

PAINT can paint any type of figure. However, if

the shape is extremely complicated with many
corners, an error message could result.

PEEK

Purpose: To read the byte at a specified memory location.

Format: PEEK(/)

Comments: i must be an integer in the range 0 to 65535.

The byte returned by PEEK will be an integer

between 0 and 255.

Example:
] l=PEEK (48345)

Example: 10 HGR5 : REM BIT IMAGE GRAPHICS
MODE
20 HCOLOR = 7

30 DRAW HCIRCLE (140, 90), 80 : REM
DRAWS A CIRCLE
40 PAINT (140, 90), 4, 7

When the program is executed, a white circle

centered at (140, 90) will be painted yellow

inside.

POKE

Purpose: To write a byte of data into a specified memory

location.

Format: POKE n,m

Comments: The data to be placed in memory is m, which

must be between 0 and 255. The memory locat-

ion is n, and this must be in the range 0 to

65,535.

Important: The Laser 3000 does not check on

the address you use in the POKE command, so if

you POKE a value into one of its dedicated

memory areas, or into your Basic program area,

you may find that the machine ceases to operate.

Example:] POKE 1000, 10

POP

Purpose: To change the action of a RETURN from a

subroutine

Format: POP

Comments: POP effectively removes the top address from

the stack of subroutine RETURN addresses.

Example: 10 GOSUB 100

20 END
100 GOSUB 200

110 PRINT "THIS STATEMENT
NEGLECTED"

120 RETURN
200 POP
210 RETURN
RUN

Program flows from statement 10, 100, 200, 20.

statement 1 10 is skipped due to pop action.

99

PR#

Purpose: To switch the output to the selected device

Format: PR^device no

Comments: The number given as device no must be between
0 and 8. PR#0 will turn off all selected device

whereas PR#8 will list all function keys. If

there is nothing connected at the given device

then your Laser 3000 will suspend operation,

and you will have to RESET the machine.

PRINT

Purpose:

Format:

Comments:

To display characters on the display screen.

PRINT [//sf] U
? [list] [;]

The list is a number of values — either variables

or constants — which may be strings or numbers.

If literal strings are to be printed out, they must

be enclosed by quote marks ("literal").

If the list is not given, then PRINT will output a

blank line, which can be handy for spacing out

results as you display them on the screen.

If you separate the values in the list by commas,

then each value will start in the next tab field,

each of which comprises 16 column.

If you separate the value by one or more blanks

or by a semicolon, then all the values will be run

together.

Depending on the width of the display you have

- see the WIDTH command - PRINT may run

values over to the next line.

101

PRINT will use either integer or fixed point

format for outputting numbers depending on

whether they are expressible in nine or fewer di-

gits.

Examples:
] PRINT 10, 20

10 20

] PRINT 10;20

1020

102

PRINT USING

Purpose: To format output in a desired way.

Format: PRINT USING formatfield ; expression 1 ; ex-

pression2 ; . .

Comments: The parameter formatfield determines just how
your program results will look when they are

printed on the display screen or to a printer. It

consists of special formatting characters which

may be classified into two types:

• string type, which control the layout of

strings; and
• numeric type, which affect the layout of

numbers.

STRING TYPE CHARACTERS

Character Action

n
|

it Only the first character is printed.

The entire string is printed.

"/ n spaces /" The next field will print n+2 characters, if

the string is longer than the field, the extra

characters are ignored. If field is longer than

the string, the string will be moved left, left-

justified in the field, and padded with spaces

to the right.

103

Example:

10 A$ = " VIDEO"
20 B$ = " TECHNOLOGY "

30 PRINT USING "& A$; B$

40 PRINT USING "
!
"

;
A$; B$

50 PRINT USING"/ / " ;
A$; B$

RUN
VIDEOTECHNOLOGY
VT
VIDETECH

NUMERIC TYPE CHARACTERS

Character Action

* The hash (ft) sign is used to represent each

digit position of a number. A decimal point

may be inserted at any position in the field.

If the number to be printed has fewer digits

than the number of positions given, then

the number will be moved to the right

(right-justified), and the area before it filled

with spaces.

If the number to be printed has more digits

than the number of positions allocated to

it, the format field will be filled with @ to
indicate overflow.

Numbers are also truncated as necessary.

Character Action

+/— A plus sign (+) at the beginning of the

format string will cause the sign of the

number to be printed before the number.

A minus sign (—) at the end of the format

field will cause negative numbers to be

printed with a trailing sign.

You cannot use a minus sign at the front of

a format field.

Example:

10 A= .776 : B = -2.3 : C = 1234

20 PRINT USING "##.##"; A ; B ; C

30 END

RUN
0.77 -2.30@@@@@@

This layout can be improved by putting some

spaces at the end of the format field. This will

separate the printed values on the line.

20 PRINT USING " nn.uu "
; A; B; C

30 END

RUN
0.77 -2.30 @@@@@@

105

Example:

10 A = .776 : B = -2.3 : C = 1234

20 PRINT USING "+##.##

30 PRINT USING

RUN

;
A; B; C
A; B; C

+0.77 -2.30 @@@@@@
0.77 2.30- @@@@@@

100

Character Action

A double asterisk at the start of a format

field causes leading spaces in the number to

be filled with asterisks. This also allocates

two more digit positions to the format.

For example:

PRINT USING " **#.* " ;2.23; -.9;123

Resulting in —

***2.2 **-0.9 *123.0

$$ Using this at the beginning of a format field

causes a dollar ($) sign to be printed to the

left of the output number. The $$ also sets

up two more digit positions, one of which is

taken up with the dollar sign itself.

For example:

PRINT USING "$$#.* " ;2.23; -.9; 123

$2.2 $0.9

**$ This combines the effects of the last two for-

matting characters sets.

For example:

PRINT USING " **$#.# 2.23; -.9; 123

Resulting in this output:
****$2.2 ***-$0.9 **$123.0

107

Character Action

A AAA Four carats (a) at the end of a format field

specify that the number should be output

in exponential form. The four carats make
spaces so that the sign of the exponent may
be printed out as well.

The significant digits are left-justified and
the exponent is adjusted.

For example:

PRINT USING” a a 999; -.892;

.0005

will result in this output:

99.9E+01 -89.2E-02 50.0E -05

A comma in front of the decimal point in

the format field causes a comma to be
printed to the left of every three significant

digits from the decimal point.

For example:

] PRINT USING "####,.#"• 1234 56
1,234.5

]

READ

Purpose:

Format:

Comments:

Example:

To read values from a DATA statement and to

assign them to variables.

READ variable [, variable .

.

.]

The READ statement must be accompanied by

the DATA statement. Enough data must be

specified by the DATA statement in order to be

READ otherwise on 'OUT OF DATA ERROR'
may result.

variable can be either numberic or string vari-

ables.

DATA statements can be re-used after they have

been READ once, but to do this you must use

the RESTORE command

] 10 READ A
] 20 READ B$

] 30 PRINT A;" "
; B$

] 40 DATA 10, IS TEN

] RUN
10 IS TEN

RECALL

Purpose: To read a numeric array values that have been

written to a data cassette tape.

Format : RECALL arrayname

Comments: This command is used in conjunction with the

STORE command, which writes array values

on to cassette tape.

The arrayname does not have to be the same as

that used in the STORE command, but the

DIMensions must match up, otherwise the values

will be scrambled.

Example: DIM EX (7, 6, 2)

RECALL EX

REM

Purpose: To let you REMind yourself by REMarks of

what your program should do.

Format: REM remark

Comments: REM statements are not executed, and they

only appear when your Basic program is listed.

You will find them useful to document your

programs with, despite the fact that they take

up memory space.

They can be added at the end of Basic program

lines if they are preceded by a colon.

Examples: 10 REM THIS IS A REMARK
20 PI = 3.14 : REM APPROXIMATE VALUE

OF PI

RESTORE

Purpose: To use DATA values again after they have been

READ.

Format: RESTORE

Comments: After a RESTORE statement is executed, the

next READ statement will read the first item of

the very first DATA statement in your program.

Examples:
] 10 READ A
] 20 READ B

] 30 DATA 10, 20, 30

] 40 PRINT A, B

] 50 RESTORE
] 60 READ C, D, E

] 70 PRINT C, D, E

] RUN
10 20

10 20 30

RESUME

Purpose: To restart a program that has been halted due to

an error.

Format: RESUME

Comments: This command is mainly used at the end of an

error handling routine, and it causes the pro-

gram to restart execution at the statement which

caused the error. If an error occurs during the

error handling, then RESUME will place your

program in an infinite loop. You can get out of

this only by pressing the RESET botton.

RIGHTS

Purpose: To return a specified number of characters from

a string proceeding from the right

Format: RIGHT$(X5,/)

Comments: If / is greater than or equal to LEN(XS), then

the whole string is returned. Integer / must be

between 1 and 255. see LEN, LEFTS, and
Ml D$ string functions.

] 10 X$=" Laser 3000"

] 20 PRINT RIGHTS(XS,4)

] RUN
3000

]

Example:

ROT

Purpose:

Format:

Comments:

Example:

To specify the angle by which a shape drawn by

either DRAW or XDRAW commands will

ROTate.

ROT = angle

For shapes drawn using the DRAW shape com-

mands, the value given as angle can be anything

between 0 and 255, with 255 representing a

360 rotation.

For shapes drawn using the shape table method,

a value of 16 for angle will rotate a shape

through one right angle (90°)
;
twice 16 (32) will

rotate it through two right angles (180°); 48 will

rotate it throught three right angles; and 64 (=4

X 16) will perform a complete rotation, bringing

it back to its original position.

See SHLOAD command for an example on ROT

115

RUN

hmr

Purpose: To start a program execution.

Format: RUN [linenumber]

Comments: Unless linenumber is given, RUN always begins

execution with the lowest numbered line.

When linenumber is specified, it starts at that

line.

Example:] 10 PRINT "FIRST LINE”
] 20 PRINT "SECOND LINE"
] 30 PRINT "ALL DONE"

] RUN
FIRST LINE
SECOND LINE
ALL DONE
] RUN 30
ALL DONE

SAVE

Purpose: To write a program on to data cassette tape.

Format: SAVE

Comments: This command is the opposite to LOAD, which

reads a program from cassette tape into the com-
puter's memory.
SAVE does not check whether your cassette

player is running in either play or record modes,

but it does cause the Laser 3000 to issue a

"Beep" at the start of SAVing, and to issue an-

other at the end.

Your cassette player should be in record mode
when you use SAVE.

117

SCALE

Purpose: To increase or decrease the size of shapes creat-

ed by DRAW or XDRAW.

Format: SCALE = size

Comments: The size number must be between 1 and 255. If

it equals 2, each straight line in the shape is

doubled; if it equals 3, each line is tripled in

size; and so on up to a multiplication factor of

255.

Example: See SHLOAD command for an example in

SCALE.

SHLOAD

Purpose: To load a shape table in memory.

Format: SHLOAD

Comments: Once a shape table has been created, you can

save it on tape.

To do this, you have to:

(1) store the length of the shape table into hex

location 0 (for lower two digits) and 1 (for

upper two digits)

(2) Type 0.1 W start . end W in kernel mode
t t

end address of the shape table,

the start address of the shape table.

(3) Put your cassette in recording mode and

press RETURN on your Laser 3000

Once the save process is completed, you can put

the tape aside and use it later.

To load a shape table into the memory, rewind

the tape to the start of data, type in SHLOAD
and iRETURNl then press PLAY on your

cassette unit.

As in loading a Basic program from tape, you

should hear two beep's during the whole loading

process.

119

Example: starting address at the shape table = S 1000

ending address at the shape table = S 1200

length of the shape table = S 200

To save this shape table on tape, you should

enter the kernel mode and type the following:

] CALL-151
* 00:00 02
* 0.1 W 1000 . 1200 W
* E003G
]

To load the shape table, you must rewind the

tape and type in:

SHLOAD

SOUND

Purpose: To produce sounds through the internal sound

generator.

Format: SOUND pitch, duration [, channelnumber,

volume]

SOUND DEF
SOUND TEMPO duration

SOUND note, no of beats length [, channel

number, volume]

SOUND

Comments: There are two types of SOUND statement avail-

able on the Laser 3000.

The first type uses pitches that can be varied

almost continuously — between 1 and 63 —
while the second uses pitches that relate to

actual notes on the music scale.

The four parameters — pitch, duration, channel-

number, and volume can either be specified as

constant numbers or as variables, or in any mix-

ture of both.

The highest pitch in the first type of command
is produced when pitch equals 1, and the lowest

when it equals 63.

duration can range from 1 to 255, with each

unit being 1 video frame time, iesoorgos. To
get a duration of one second, set duration

equal to 50 or 60.

channe/number can be 1,2, or 3, depending on

where you want the sound produced. Only one

channel can be active at any one time.

volume can range from 0 to 15, with 15 being

the loudest.

The second type of SOUND command allows

you to use all 3 tone channels to sound music
notes simultaneously. First you declare that the

BASIC statements thereon are for defining the

notes of a piece of music composition, by
entering:

linenumber SOUND DEF

Secondly, you define the duration of each beat:

A duration of 1 is approximately 0.01s. The
range of duration is from 1 to 255.

linenumber SOUND TEMPO duration

Thirdly, you define the notes for each tone

channel:

linenumber SOUND note, no of beat length, [,

channel number, volume
]

And you execute the above definition:

linenumber SOUND

Notice that for each tone channel, you can de-

fine, at most, 16 notes. For a music piece longer

than 16 notes per channel, you can repeatedly

DEFine and SOUND the composition.

123

i

The notes

Each notes must be specified as x 1 x2 [x3]

where:

xl can be chosen from A, B, C, D, E, F, G:

x2 can be chosen from 1, 2, 3, 4, 5, 6, or 7 and

x3 can be chosen from# (sharp), or b or F (flat)

Seven octaves are thus provided. A4 is middle A,

with a frequency of 440 Hz, the reference

harmonic. C4 is middle C.

NUMBER OF BEATS LENGTH
The length of a beat can vary from 1 to 31.

Usually the shortest note in a music piece should

be taken as one beat.

Examples: Turn on channel 2 for 2 seconds

Sound 50,120,2,10-* volume

channel 2

duration = 120 x — S = 2S
60

an artbitrary tone

Send out 10 different tones through channel 1

10 For I = 1 to 10

20 SOUND 1*6, 60, 1, 15

30 NEXT I

40 END

the duration of each tone = 1 second

12S

The following example demonstrates the usage

of the three sound channels.

Channel

Channel

Channel

Example: 10 SOUND DEF

20 SOUND TEMPO 100

30 SOUND C4,4, 1,15
"

40 SOUND C4, 1, 1,0 —
50 SOUND E4, 3, 1,15 <

60 SOUND E4, 3, 2, 0
jh

70 SOUND D4, 3,2, 15 J1

80 SOUND 04,7.3.0

90 SOUND F4. 4. 3, 15

100 SOUND

data for channel 1

data for channel 2

data for channel 3

Line 40, 60, and 80 are used to idle the channels

by setting the channel volumn to 0, hence turn-

ing off the channel. The tone is meaningless and
can be artbitrarily set when a channel is off.

SPC

Purpose: To separate two printed items by a specified

number of spaces.

Format : PRINT SPC (expression

)

Comments: This command, which is used in conjunction

with the PRINT command, can be used to lay-

out results printed by a program.

The value evaluated from expression must range

between zero and 255.

117

SPEED

Purpose: To specify the rate at which characters are to be

sent to an output device.

Format: SPEED = rate

Comments: The slowest rate is zero, and the fastest and the

default rate is 255.

STOP

Purpose: To halt program execution and return to com-

mand level.

Format: STOP

Comments: This command is similar to END, except that

STOP causes the message "Break in nnnnn" to

be displayed, where nnnnn is the line number
of the STOP statement.

The Laser 3000's Basic interpreter always

returns to command level after a STOP is

executed.

Example:] 10 READ A
] 20 PRINT 7*A

] 30 STOP
] 40 DATA 7

] RUN
49

BREAK IN LINE 30

129

STORE

Purpose:

Format:

Comments:

Example:

To write a numeric array on to a data cassette

tape.

STO R E arrayname

This command writes the values in an array to

cassette tape, but it does not store the name of

the array used. Thus it could be RECALLed
with another array name. RECALL is the com-
mand that reads array values from cassette

tape back into the Laser 3000's memory.

DIM EX (7,6,2)

STORE EX

The array element EX (0, 0, 0) Through EX (7,

6, 2) will be stored on to the cassette tape.

STRS

Purpose: To return a string representation of a numeric
value.

Format: STRS(x)

Comments: This is a good means of checking the number of

digits in a numeric constant, if it is used in con-

junction with the LEN string function.

Example:] 10 INPUTA
] 20 X$ = STRS (A)

] 30 PRINT X$
] 40 PRINT " THE NUMBER HAS

LEN (X$); " DIGITS "

] 50 GOTO 10

RUN
? 1234

1234

THE NUMBER HAS 4 DIGITS
?

131

SWAP

Purpose: To interchange the values of two variables.

Format: SWAP A, B

Comments: The variables may be of the same type, i.e. they

must both be integer, floating point or string

variables.

Example: 10 A = 10 : B = 20

20 PRINT A, B

30 SWAP A, B

40 PRINT A, B

RUN

10 20

20 10

TAB

Purpose: To move the cursor a specified number of places

to the right of the left margin.

Format: PRINT TAB (expression)

Comments: The TAB function only moves the cursor to the

right. Hence, if the value evalvated from the ex-

pression is smaller then the column number of

the current cursor position, the cursor will not

move.

The value of expression must be form 0 to 255.

Example: 10 PRINT TAB (10)

20 PRINT "10 COLUMNS TO THE LEFT”

The computer will print out the string on state-

ment 20 starting from the 10th column.

TEXT

Purpose: To set the display to full-screen text mode or to

set character, background and border colours.

Format: TEXT
TEXT character [, background, border]

TEXT NORMAL

Comments: The full-screen text mode is made up of 24 lines

of between 40 and 80 character each.

If no operand is given, TEXT set the display to

full-screen text mode. Otherwise graphics and

characters are set to have character colour with

background surrounded by a border no matter

what the original colours of the display are.

TEXT NORMAL will set the character and

background to their default colour, i.e. white

and black.

If the background colour is not specified, the

character and border colours must be separated

by 2 commas, for example:

TEXT NORMAL,, BLACK enables normal
coloured display.

Example:] TEXT GREEN, BLUE, RED

All display graphics or characters will have green
dots with blue background surrounded by a red
border.

TROFF

Purpose: To stop program statement numbers from being

displayed as a program executes

Format: TROFF

Comments: This turns off TRON . If TRON is not on,

TROFF has no effect.

TRON

Purpose: To display line numbers of a program as they are

executed.

Format: TRON

Comments: TRON is very useful in determining where a

program may be going wrong (debugging). The

line number of statements executed thereafter is

displayed. TRON is turned off by the TROFF
command.

Example:] 10FORJ=1TO3
] 20 PRINT J*2

] 30 NEXT J

] 40 END

] TRON
] RUN

LINE 10

LINE 20

2

LINE 30

LINE 20
4

LINE 30
LINE 20

6

LINE 30
LINE 40

136

USR

Purpose:

Format:

Comments:

Example:

This command specifies a parameter of an

assembly language subroutine.

USR (n).

n is arithmetic expression. When USR is en-

countered, the arithmetic expression is evaluated

and placed in the floating point accumulator,

and a JSR to location OA is performed which

must then contain a JMP to the beginning

location of the machine-language subroutine. An
RTS machine instruction should be executed at

the end of the machine language subroutine.

] CALL-151
* OA : 4C 10 03
* 310 : 60
* E003G

] PRINT USR (9) * 12

108

]

A JMP $310 instruction is placed at location

$0A and RTS instruction at $ 310.

137

VTAB

Purpose: To move the cursor a given number of lines

down the display screen.

Format: VTAB number

Comments: As there are only 24 lines on the display,

number values outside of 1 to 24 will cause an

error. The screen lines are numbered from top to

bottom.

Example: 10 HOME
20 VTAB 10

30 PRINT " DOWN 10 ROWS”

WAIT

Purpose: To suspend a program's execution while watch-

ing the status of an input port.

Format: WAIT portnumber, n [,m]

Comments: This command suspends a program's execution

until a specified input port develops an expected

bit pattern.

The command loops around, reads the data at

the port, XORs it with the integer value m, and

then ANDs the result with the integer value n.

If m is not specified, it is taken to be zero.

If the result at the end of the loop is zero, the

loop starts over again.

Jf the result is not zero, then the program

reumes execution at the next executable state-

ment after the WAIT.

Careful: you can get into a continuous loop with

the use of the WAIT command. Push the Laser

3000's Reset button if you believe this has

happened. It will let you out of the loop, and

return you to command level.

Example: WAIT 49152, 128

This will wait until a key is pressed which will

set the most significant bit.

139

WIDTH

Purpose: To set the width of the text window.

Format: WIDTH n

Comments: On power up, the text window is set to 40

columns wide (or 80 columns if you have press-

ed the ESC key during power up).

You can shorten or extend the text window to n

characters by WIDTH n, where n ranges from 1

to 80.

Example: WIDTH 70

The screen will be cleared and the cursor returns
to HOME position. Keyboard entry will be dis-

played from column 1 to column 70. The 71st
character entered will appear on the next line.

140

XDRAW

Purpose:

Format:

Comments:

Example:

To erase a drawn shape

XDRAW shape no AT x,y

This command allows you to erase a shape with-

out erasing the whole screen.

10 DRAW 1 AT 100,100

20 FOR D = 1 to 1000 : NEXT D
30 XDRAW 1 AT 100,100

Assuming you have defined shape 1, this pro-

gram will first draw it at co-ordinates (100, 100),

then wait for a while and finally erase the drawn

shape.

CHAPTER

LASER 3000 BASIC FUNCTIONS

LASER 3000 BASIC FUNCTIONS

This chapter lists alphabetically and describes the intrinsic

functions available for the Laser 3000's Basic.

The arguments — or parameters — for the functions are

usually enclosed in parentheses.

The conventions followed for the arguments are as follows.

y and x Represent any numeric expressions

/ and / Represent any integer expressions

X$ and Y$ Represent any string expressions

ABS

Purpose:

Format:

Comments:

Example:

To give the absolute value of a numeric express-

ion.

ABS(x)

This function always returns a positive value,

and can be used with either floating point or

integer values.

] PRINT ABS(9*(-7))

63

]

ASC

Purpose:

Format:

Comments:

Example:

To return the ASCII code for the first character

of the specified string.

ASC(X$)

An error will result if the string specified is a

null string.

] PRINT ASC(''Laser")

76

]

W7

ATN

Purpose: To calculate the arctangent of an angle.

Format: ATN(x)

Comments: This gives the arctangent of x in radians, with

the result in the range - TT/2 to tr/2.

Example:] PRINT ATN(8)
1.44644133

cos

Purpose:

Format:

Comments:

Example:

To calculate the cosine of an angle.

COS(x)

The value of the angle must be given in radians,

and not degrees.

] PRINT COS(2)

-.416146836

]

149

Purpose: To calculate the value of "e" — the base of

natural logarithms — raised to a specified power.

Format: EXP(x)

Comments: The value of x should be less than 89, or an

overflow error will result.

Example:] PRINT EXP(9)

8103.08393

FRE

Purpose: Reports on the number of bytes in memory that

are not being used by Basic.

Format: FRE (expression)

Comments: Because strings in Basic can have different

lengths, and need to be manipulated. This fre-

quently causes the memory to become very

fragmented, using this statement with a dummy
argument can force Basic to gather up all the

loose fragments into contiguous wholes (garbage

collection.)

This frees up areas of memory, and can often

give you a surprising amount more.

Example: X=FRE(0)
This would lead to a garbage collection operat-

ion. It may take some time.

PRINT FRE(O)

In addition to a garbage collection operation,

this would print out the amount in bytes of free

user memory.

151

INT

Purpose:

Format:

Comments:

Examples:

To round a fractional number down to a whole

number.

INT(x)

This function always returns an integer that is

less than or equal to the number x.

] PRINT INT(31.98)

31

]

PRINT INT(-31.98)

-32

]

LEN

Purpose:

Format:

Comments:

Example:

To return the number of characters in a string.

LEN(X$)

This function counts all characters in the

specified string, including blanks and non—print-

ing characters.

] NEW
] 30 X$=” Laser 3000”

] 40 PRINT LEN(X$)

] RUN
10

]

LOG

Purpose:

Format:

Comments:

Example:

To calculate the natural logarithm of a specified

value.

LOG(x)

The value x must be greater than zero.

] PRINT LOG(669)

6.50578406

]

POS

Purpose: To return the current horizontal cursor position.

Format: POS(/)

Comments: The leftmost cursor position is 0 on the Laser

3000 display screen. The argument / is a

dummy.

Example:
]

]

HTAB (10) : PRINT POS (1)

9

156

RND

Purpose: To return a random number between 0 and 1.

Format: RND(x)

Comments: The value of the dummy argument x, deter-

mines how the random numbers are generated.

If x is greater than zero then RND (x) generates

a new random number everytime it is used.

If x is less than zero, then RND (x) generates the

same random number everytime it is used with

the same argument.

Example:] 10 FOR 1=1 TO 6

] 30 PRINT INT(RND(1)*1000)

] 50 NEXT
] RUN

797

584

268

397

31

932

]

SGN

Purpose:

Format:

Comments:

Example:

To return the sign of a number.

SGN(x)

If the number is greater than zero, then SGN re-

turns 1; if it is zero, SGN returns zero; and if it

is negative, then SGN returns -1.

] 10 INPUTA

] 20 B=SGN(A)

] 30 IF B=0 THEN 90

] 40 IF B>0 THEN 70

] 50 PRINT "A IS NEGATIVE"
] 60 GOTO 10

] 70 PRINT "A IS POSITIVE"

] 80 GOTO 10

] 90 PRINT "A IS ZERO"
] 100 GOTO 10

] RUN
? 1

A IS POSITIVE
?- 4

A IS NEGATIVE
?0
A IS ZERO
?

SIN

Purpose: To calculate the sine of a specified angle.

Format- SIN(x)

Comments: The value of the angle must be given in radians,

and not degrees.

Example:] PRINT SIN(4)

-
. 756802495

]

SQR

Purpose: To calculate the square root of a specified value.

Format: SQR(x)

Comments: A negative value for x will cause an error.

Example:] 10 FOR 1
= 1 TO 6

] 20 PRINT 2 A (2*I), SQR(2 A (2*I))

] 30 NEXT
] RUN
4 2

16 4

64 8

256 16

1024 32

4096 64

]

159

TAN

Purpose:

Format:

Comments:

Example:

To calculate the tangent of a specified angle.

TAN(x)

The value of the angle must be given in radians,

and not degrees.

] PRINT TAN(12)
-

. 635859926

VAL

Purpose:

Format:

Comments:

Example:

To return the numerical value of a specified

string.

VAL(XS)

The function ignores leading spaces of the

specified string.

] PRINT VAL (" 78")

78

]

GLOSSARY

This section of the Basic manual explains the technical terms

you may come across as you use your Laser 3000 computer.

address: The location of a register, a section of memory, or

data in either RAM or ROM memory.

algorithm: A set of rules used to solve a problem in a finite

series of steps.

alphabetic character: A letter of the alphabet.

alphameric or alphanumeric: Referring to a character set

that can include both letters and digits.

application program: A program applied to a specific task.

argument: A value that is passed from one program to an-

other.

array: Elements arranged in table form in one or more di-

mensions.

ASCII: American Standard Code for Information Inter-

change. One of the standard code used forexchanging infor-

mation among computers and assoicated equipment.

asynchronous: The occurance of certain data signal, which

has no definite relationship with time or other signals. Mainly

refers to communications devices.

165

attribute: A property of an item.

background: The part of the display screen surrounding a

character.

backup: A secure copy of a program or data that can be used

if the live version is corrupted.

baud: A measure of a device's communication speed; equal

to bits per second.

binary: Usually refer to the number system based on two.

bit: A part of the binary number system, either 1 or 0.

boolean value: A logical value that is either true or false.

bootstrap: Derived from the phrase "Pulling oneself up by

one's bootstrap." A program which starts the computer's

kernel or operating system running.

bps: Bits per second.

buffer: An area of memory in a computer peripheral, such as

a printer, that is used to accomdate data. A buffer helps to

match a fast input with a slow output, and is comparable to a

cistern.

bug: An error in a program,

byte: A set of eight binary bits.

call: To bring a computer program or a subroutine into

effect, usually by specifying the initial arguments and by
starting at a given point.

carriage return character(CR): A character that causes the

print or display position to move to the first position on the

next line.

channel: A path along which signals are sent.

character: Either a letter, a number, or special symbol,

represented as a byte.

clock: Device that generates regular signals used for

matching electronic operations within the computer. Each

signal is called a clock pulse.

communication: The transmission and reception of infor-

mation.

complement: The binary number formed from another by
changing its ones to zeros, and its zeros to ones.

ones.

concatenation: Bringing together two strings of characters,

constant: A fixed, invariable value.

control character: A special character which controls the

action of a peripheral device such as a printer or display.

167

co-ordinates: A set of two or more numbers which deter-

mine the position of a point in two or more dimensional

space.

cursor: A flashing element on the display that indicates the

position of data or program entry.

debug: To find and remove mistakes in a program.

default: An assumed value when a selection is possible.

delimiter: A character that groups or separates values.

diagnostic: Detection and isolation of a malfunction or mis-

take.

dummy: A fictitious argument, having no effect, but ne-

cessary for the operation to start working.

duplex: In data communications, referring to a simultaneous

two-way independent transmission in both directions.

echo: To reflect received data to the sender. For example,

keys pressed on the keyboard are usually echoed as

characters shown on the display screen.

element: A member of a set, usually a value in an array.

field: In a file record, a specific section used for a particular

type of data.

file: A set of related records which is treated as a unit by a
computer program.

flag: Indicators used for determining program flow rather

like flags for railways.

floppy disk: A flexible diskette.

font: A family of characters of a particular style.

foreground: The part of the dislplay area that is the

character itself.

format: The particular arrangement or layout of data on a

data medium, such as the screen or a diskette.

form feed (FF): A control character that causes the print or

display position to move to the next page.

function: A procedure which returns a result depending on

the value of one or more independent variables in a deter-

mined way. For example, sine and tangent are functions

which relate to angles.

function key: One of the eight keys labeled FI through F8

on the top row of the keyboard.

garbage collection: Gathering up loose scraps of memory

into continuous wholes.

half duplex: In data communication, referring to a one way

independent transmission, at any one time.

hard copy: A printed copy of computer output.

169

hertz (Hz): A unit of frequency equal to one cycle per

second.

increment: A specified value used to update a counter in a

loop.

initialise: To set counters, switches, addresses, or contents

of memory to their starting values at the beginning of a com-

puter routine.

instruction: An expression in a computer program that per-

forms an operation, such as a add or jump.

integer: A whole number, whether positive, negative or zero.

interface: A medium between two devices.

interpret: In Basic, the translation and performance of a lan-

guage statement.

interrupt: To halt a process in such a way that it can be re-

started.

joystick: A lever that can pivot in all directions and is used
to manipulate a cursor in games.

justify: To align characters so that they are all either to one
side, or all positioned at either the top or bottom of a layout.

K, or kilo (byte): A measure of computer memory. 1KB is

1,024 bytes.

170

keyword: One of the predefined words of a programming

language; a reserved word.

leading: The left-most part of a field.

light pen: A light sensitive input device that interacts with a

display screen to either move its cursor or to cause it to

generate shapes.

line feed (LF): A control character that causes the print or

display position to move to the first position on the next

line.

literal: A constant string value.

loop: A set of instructions that are executed repeatedly

while a certain condition is true.

M, or mega (byte): A measure of computer memory. 1MB

is 1,048,576 bytes.

machine infinity: The largest number that can be represent-

ed in a computer's internal format.

mantissa: The decimal part of a number expressed in ex-

ponential format.

mask: A pattern of bits that is used to control the formation

of another pattern of bits.

matrix: An array with two or more dimensions.

dot-matrix printer: A printer in which each character is

formed by a pattern of dots, which are produced by a matrix

of fine wires.

menu: A list of options.

nest: To incorporate a program structure of some kind into

another structure of the same kind. For example, you can

put loops within other loops, i.e. nesting, or call subroutines

from within other subroutines.

null: Empty, having no meaning. In particular, a string with

no characters in it.

octal: Referring to the base 8 number system.

offset: The number of units from a starting point (in a re-

cord, control block, or memory).

operand: That which is operated on by an operator.

operating system: Software that controls the execution of

application programs.

operation: A well-defined action that, when applied to any

permissible combination of known entities, produces a new
entity.

overflow: When the result of an operation exceeds the

capacity of a register.

overlay: To use the same areas of memory for different parts

of a computer program at different times.

overwrite: To record into an area of storage so as to destroy

the data that was previously stored there.

pad: To fill a block with dummy data, usually zeros or

blanks.

page: Part of the screen buffer that can be displayed and/or

written on independently.

parameter: A name in a procedure that is used to refer to an

argument passed to that procedure.

parity check: A means of ensuring that data is passed cor-

rectly. Usually the number of 1 bits in a byte is summed. If

the number of them is even, a parity bit is not set; if odd, a

parity bit is set.

pixel: A single point on a video display.

port: An access point for data entry or exit.

precision: A measure of the accuracy of a calculation, fre-

quently the number of decimal places in a number.

prompt: A query from the computer. The 3 sign is an

example of a prompt in Laser 3000 Basic.

queue: A line or list of items waiting for attention.

random access memory! RAM): Storage in which you can read

and write to any desired location.

173

range: The extent of values that a variable quantity may as-

sume.

read-only: A type of access to data that allows it to be read

but not modified.

record: A collection of related information, treated as a unit.

recursive: Referring to a process in which each step makes

use of the results of earlier steps.

reserved word: A word that is defined for a special pur-

pose, and that you cannot use as a variable name.

resolution: In computer graphics, a measure of the sharp-

ness of an image, expressed as the number of lines per unit of

length.

routine: Part of a program, or a sequence of instructions

called by a program, that may have some general or frequent

use.

scalar: A value or variable that is not an array.

scale: To change the representation of a quantity, expressing

it in other units, so that its range is brought within a specified

range.

scan: To examine sequentially, part by part.

scroll: To move all or part of the display image vertically or
horizontally so that new data appears at one edge as old
data disappears at the opposite edge.

segment: A particular 64K-byte area of memory.

sequential access: An access mode in which records are re-

trieved in the same order in which they were written. Each

successive access to the file refers to the next record in the

file.

stack: A method of temporarily storing data so that the last

item stored is the first item to be processed.

statement: A meaningful expression that may describe or

specify operations and is complete in the context of a pro-

gramming language.

stop bit: A signal following a character or block that pre-

pares the receiving device to receive the next character or

block.

string: A set of characters.

subscript: A number that identifies the position of an ele-

ment in an array.

syntax: The rules governing the structure of a language.

table: An arrangement of data in rows and columns, a two

dimensional array.

terminal: A device, usually equipped with a keyboard and

display, capable of sending and receiving information.

toggle: Referring to anything having only two stable states;

to switch back and forth between the two states.

trailing: Located at the end of a string or number. For

example, the number 2000 has three trailing zeros.

trap: A set of conditions that describe an event to be inter-

cepted and the action to be taken after the interception.

truncate: To remove the trailing elements from a string or

a number.

two's complement: A form for representing negative

numbers in the binary number system.

variable: A quantity that can assume any of a given range of

values.

vector: An ordered set of numbers.

APPENDICES

APPENDIX I

ERROR MESSAGES

LASER 3000 BASIC ERROR MESSAGES

In most cases, when an error occurs in a Laser 3000 Basic

program, the Interpreter returns to command level.

This is designated by the " 1 " prompt and a flashing cursor.

The program remains in memory, and the variables are set at

the values they had assumed at the time the error was en-

countered.

You can use the PRINT command in direct mode to ascertain

the values your program variables had at the time of the

error.

To avoid your program stopping on coming across an error,

you can use error trapping. See the ONERR GOTO statement

for an explanation of how to use this technique.

LIST OF ERROR MESSAGES AND EXPLANATIONS:

CANT CONTINUE

This message will occur when you have halted a program

(using STOP or CTRL-C or lBREAKI) . then edited it, and tried

to CONTinue. It will also arise when you try to CONTinue

a program after an error has occurred.

DIVISION BY ZERO

This error will stop your program executing. You cannot

divide a number by zero.

ILLEGAL DIRECT

This occurs when you try to use the following statements in

the direct mode:

• GET

• DEF FN

• INPUT

180

ILLEGAL QUANTITY

The argument given to an arithmetic or string expression

either does not match the type of expression or it is out of

the expression's range. Possibilities are:

• using the SQR — square root — function with a negative

argument.

• using a negative argument for the subscript of an array.

• using a negative or zero argument with the LOG - natural

logarithm — function.

• mismatches either using the string functions with numeric

variables, or other functions with the wrong variables.

NEXT WITHOUT FOR

Self explanatory. The variable given in a NEXT statement

does not match the variable name given in a FOR statement

which is in operation.

Alternatively, a NEXT does not correspond to any FOR
statement which is in effect.

OUT OF DATA

This occurs when a READ statement is executed but either

all the DATA statements have already been read, or there is

not a match between the number of variables in the READ
statement and the number of values given in the DATA
statement.

OUT OF MEMORY

This message can arise from a number of conditions and

errors:

• your program is too large for the available memory.

• your program has too many variables for the Basic inter-

preter to handle — a number in excess of 100 combined
with a long program will cause this error.

• if you have FOR...NEXT loops nested to more than 10
levels.

• if you have GOSUB...RETURNS nested more than 24
levels.

• if an expression is too complicated for the interpreter to
decipher.

• if parentheses are nested to more than 36 levels.

The last two possibilities are related, with the second giving
an indication of the level of complexity permitted.

FORMULA TOO COMPLEX

A string expression is either too long or too complicated.

Break the expression down into smaller expressions.

OVERFLOW

The result of a calculation exceeded 10E38, which is the

Laser 3000's maximum number size. If a number is calculat-

ed as less than 10E-38 — the Laser's minimum number size —

then the result becomes zero, and execution continues with

no message being printed.

REDIM'D ARRAY

If an array has been used relying on the default DIMensioning

of an array, and then the array is explicitly DIMensioned

with another statement, this message will be displayed.

Alternatively, it occurs when two different DIMension

statements exist for the same array.

RETURN WITHOUT GOSUB

Self explanatory. A RETURN statement exists without a

corresponding GOSUB statement.

STRING TOO LONG

Trying to use the string concatenation operator (+) to bring

together two strings whose added length is greater than 255

characters. 255 is the maximum length of a string in Laser

3000 Basic.

BAD SUBSCRIPT

Your program has tried to reference an array element which

is greater than the size of the subscript given for the array in

its D I IV! statement.

This can also occur if an array is referred to using the wrong

number of dimensions.

For example, if array ARRAY has been DIMensioned DIM
ARRAY (10, 10, 10), and a subsequent statement like

ARRAY (9, 8, 7, 6) = 54 is come across, then this error

message will be displayed.

SYNTAX ERROR

The manner in which a statement, function, or expression has

been put is incorrect. Things to look for are missing commas,
spaces, parentheses, periods, or for illegal characters starting a

variable name.

TYPE MISMATCH

This occurs when you try to assign a string value to a numeric

value, or a numeric value to a string value, or if either a

numeric function receives a string value, or a string function a

numeric value.

UNDEF'D STATEMENT

A line referred to in a GOTO, GOSUB, or IF...GOTO state-

ment does not exist in your program.

UNDEF'D FUNCTION

A reference is made to a user defined statement which does

not exist in the Basic program.

APPENDIX II

KEYS AND THE ASSOCIATED CODES

KEY CTRL CTRL & SHIFT

SPACE 20 20

(U 30 29

m 31 21

e
2 32 00

m 33 23

m 34 24

m 35 25

ffl
36 IE

37 26

0 38 2A

s 39 28

0 2D 5F

0 3D 2B

0 5B 7B

0 5D 7D

0 3B 3A

0 27 22

0 2C 3C

0 2E 3E

0 2F 3F

0 01 01

0 02 02

03 03

0 04 04

CAP. ONLY LOWER CASE ONLY

20 20

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

2D 2D

3D 3D

5B 5B

5D 5D

3B 3B

27 27

2C 2C

2E 2E

2F 2F

41 61

42 62

43 63

44 64

SHIFT

20

29

21

40

23

24

25

5E

26

2A

28

5F

2B

7B

7D

3A

22

3C

3E

3F

41

42

43

44

KEY CTRL CTRL & SHIFT SHIFT CAP. ONLY LOWER CASE ONLY

05 05 45 45 65

06 06 46 46 66

0 07 07 47 47 67

0 08 08 48 48 68

09 09 49 49 69

0 A 0A 4A 4A 6A

a 0B 0B 4B 4B 6B

a 0C 0C 4C 4C 6C

0D 0D 5D 4D 6D

a 0E 0E 4E 4E 6E

a 0F 0F 4F 4F 6F

a 10 10 50 50 70

• 11 11 51 51 71

a 12 12 52 52 72

a 13 13 53 53 73

a 14 14 54 54 74

a 15 15 55 55 75

a 16 16 56 56 76

* 17 17 57 57 77

18 18 58 58 78

• 19 19 59 59 79

a 1

A

1

A

5A 5A 7A

a IB
44

IB
44

IB
44

IB
44

IB
44

a 0A 0A 0A 0A 0A

187

KEY CTRL CTRL & SHIFT SHIFT CAP. ONLY LOWER CASE ONLY

0 08

0 15

0 30

31

0 32

33

• 34

0 35

36

7 37

0 38

0 39

2B

2D

30
30

WTUfM 0D

(SC IB

- 1C

HHI A, 7F

08
HUTOUT 20

08

08 08 08

15 15 15

30 30 30

31 31 31

32 32 32

33 33 33

34 34 34

35 35 35

36 36 36

37 37 37

38 38 38

39 39 39

2B 2B 2B

2D 2D 2D

30 30 30
30 30 30

0D 0D 0D

IB IB IB

1C 1C 1C

7F 7F 7F

08 08 08
20 20 20
08 08 08

08

15

30

31

32

33

34

35

36

37

38

39

2B

2D

30
30

0D

IB

1C

7F

08
20
08

APPENDIX III

DISPLAY CHARACTER

40 COLUMN DISPLAY CHARACTERS

Inverse Flashing

(Control)

Normal

(Lowercase)

Decimal 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

Hex SOO SI© S20 S3© S4© S50 S6© S7© S80 S90 SA© SB© SCO SD© SE© SF©

os© @ P © @ P © P © @ P P

1 si A Q 1 1 A Q 1 1 A Q 1 1 A Q a q

2S2 B R " 2 B R 2 B R - 2 B R b r

3 S3 C S •#- 3 C S # 3 C S # 3 c S c s

4 S4 D T S 4 D T $ 4 D T S 4 D T» d t

5S5 E U % 5 E U % 5 E U % 5 E U e u

6S6 F V & 6 F V & 6 F V & 6 F V f V

7S7 G w 7 G w 7 G w 7 G w 9 w

8S8 H X (8 H X (8 H X { 8 H X h X

9S9 1 Y) 9 1 Y) 9 1 Y) 9 1 Y i V

10 SA J 2 • J z • J z • J z j z

11 SB K t
+ K (

+ K [
+ K [k {

12 SC L \ < L \ < L \ < L \ 1 }

13SD M]
- - M)

- = M]
- = M J m 1

1 4 SE N > N - > N * > N *
n ~

15 SF 0 - / ? 0 - / ? 0 - / ? 0 - o &

U*

80 COLUMN DISPLAY CHARACTERS

Inverse Flashing

(Control)

Normal

(Lowercase)

Oecimal 0 16 32 48 64 80 96 112 128 160 176 192 208 224 240

Hex soo sio S20 S30 1 S40 S50 S60 S70 S80 S90 i SAO SBO SCO SDO SEO SFO

0 SO p 0 11 <a P •1 • P 0 P P

1 si A Q 1 1 A Q a q A Q « 1 A 0 • q

2S2 B R 2 B R b r B R *
2 B R b r

3 S3 1 C S # 3 C S c » c s # 3 C S c t

4 S4 0 T S 4 D T d t D T $ 4 0 T d t

5S5 E U % 5 E U e u E U % 5 E U e «

6S6 F V & 6 F V f V F V & 6 F V f V

7S7 G w 7 G w 9 w G w 7 G w 9 w

8 S8 H X 1 8 H X h X H X 1 8 H X h X

9S9 1 Y) 9 1 Y 1 V I Y) 9 1 Y i V

10 SA J z • J z i z J z • J z i z

11 SB K l K l k { K { + K l k (

12 SC L \ < L \ 1 1 L \ < L \ 1 1

13 SO M]
- - M 1

m } M J
- - M 1 m)

14 SE N - > N - n N - > N -
n

15 SF O - 1 ? 0 - o & 0 -
/ ? 0 - 0 &

APPENDIX IV

ASCII CHARACTER CODES

The following table lists all the ASCII codes (in decimal) and

their associated characters. These characters can be displayed

using PRINT CHRS(n), where n is the ASCII code. The

column headed "Control Character" lists the standard inter-

pretations of ASCII codes 0 to 31 (usually used for control

functions or communications). They are all non-printing

characters on the LASER 3000.

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

Control ASCII

character
value Character

NUL 032 (space)

SOH 033 !

STX 034 "

ETX 035 #
EOT 036 $

ENQ 037 %
ACK 038 &
BEL 039 '

BS

HT
040 (

LF

VT

041

042

)

FF
043 +

CR 044

SO 045

SI 046

DLE 047 /

DC1 048 0

DC 2 049 1

DC3 050 2
DC4
NAK

051 3

SYN
052 4

ETB
053 5

CAN 054 6

EM 055 7

SUB 056 8

ESC 057 9

FS 058

GS 059

RS 060 <
US 061 =

062 >
063 ?

ASCII

value Character

ASCII

value Character

064 @ 095 -

065 A 096 '

066 B 097 a

067 C 098 b

068 D 099 c

069 E 100 d

070 F 101 e

071 G 102 f

072 H 103 9

073 1 104 h

074 J 105 i

075 K 106 j

076 L 107 k

077 M 108 1

078 N 109 m

079 0 110 n

080 P 111 0

081 Q 112 P

082 R 113 q

083 S 114 r

084 T 115 s

085 U 116 t

086 V 117 u

087 w 118 V

088 X 119 w

089 Y 120 X

090 z 121 V

091 [
122 z

092 \ 123 {

093]
124 !

094 A 125 }

APPENDIX V
MATHEMATICAL FUNCTIONS

Functions that are not intrinsic to LASER 3000 Personal

Computer BASIC may be calculated as follows.

Function Equivalent

Secant

Cosecant

Cotangent

Inverse sine

Inverse cosine

SEC(x) = 1/COS(x)

CSC(x) = 1/SIN(x)

COT(x) = 1/TAN(x)

ARCSIN(x) = ATN (x/SQR (1 —x *x)

)

ARCCOStx) = 1.570796

—ATN (x/SQR (1 —x *x)

)

Inverse secant ARCSEC(x) = ATN(SQR (x*x— 1))

+(x<0)*3. 141593

Inverse cosecant ARCCSC(x) = ATN(1/SQR(x*x— 1))

+(x< 01*3.141593

Inverse cotangent

Hyperbolic sine

Hyperbolic cosine

Hyperbolic tangent

ARCCOT(x) = 1.57096-ATN (x)

SINH(x) = (EXP(x)—EXP(—x))/2
COSH(x) = (EXP(x)+EXP(—x))/2

TANHfx) = (EXP(x)-EXP(-x))

/(EXP(x)+EXP(—x))

Hyperbolic secant

Hyperbolic cosecant

Hyperbolic cotangent

SECH(x) = 2/(EXP(x)+EXP(—x))

CSCH(x) = 2/(EXP(x)-EXP(-x))

COTH(x) = (EXP(x)+EXP(—x))

/(EXP(x)-EXP(-x))

Inverse hyperbolic sine

Inverse hyperbolic cosine

Inverse hyperbolic tangent

Inverse hyperbolic secant

Inverse hyperbolic cosecant

ARCSINH(x) = LOG(x+SQR(x*x+1»

ARCCOSH(x) = LOG(x+SQR(x*x— 1))

ARCTANH(x) = LOG ((1+x)/(1 —x))/2

ARCSECH(x) = LOG((1+SQR(1—x*x))/x)

ARCCSCH(*> = LOG((1+SGN(x)

*SQR(1+x*x))/x)

Inverse hyperbolic cotangent ARCCOTH(x) = LOG(/x+1)/(x— 1)/2

If you use these functions, a good way to code them would be

using the DEF FN statement. For example, instead of typing

the formula for inverse hyperbolic sine each time you need it,

you could use a program line.

DEF FN INSINEH(x) = LOG (x+SQR(x*x+1))

then refer to it as

Z= FN INSINH(x)

APPENDIX VI

SUMMARY OF BASIC COMMANDS

COMMAND DESCRIPTION

AMPERSAND
COMMAND (&)

To jump into a machine language com-

mand starting at hex location $3F5.

CALL To use an assembly language subroutine.

CHR$ Converts an ASCII code to its equi-

valent character.

CLR To clear all variables, arrays and

strings.

CONT To start a program running again after

it has been halted.

DATA To store constant numbers and string

values in your program so they can be

used in it in conjunction with the

READ statement.

DEF FN Allows you to define and name a

function.

DEL Removes program lines.

DIM This gives the values for the subscripts

of arrays, and allocates enough storage

to accomodate them.

DRAW To draw pre-defined geometric shapes.

END Finishes program execution and returns

you to command level.

FLASH To cause all computer message to alter-

nate between character and background

colour.

FOR...NEXT Loops around a group of instructions a

specified number of times.

FRE Reports on the number of bytes in

memory that are not being used by

Basic.

GET Reads a character from the keyboard

without echoing it on the screen. No

carriage return is necessary.

GOSUB...RETURN To direct the program flow into, and to

return from, a subroutine.

GOTO To direct the program flow to another

part of a Basic program.

HCOLOR To set the colour of subsequently

plotted graphics.

”7

HGR HGR1
HGR2 HGR3
HGR4 HGR5
HGR6

To set up the different graphics modes.

HIMEM To set the highest memory location

available to a Basic program.

HPLOT To draw either lines or dots.

HOME To clear screen and position the cursor

to the upper left corner of the display

screen.

HTAB To move the cursor a given number of

places to the right of the left margin.

IF...GOTO and

IF...THEN... To direct program flow depending on

the result of an evaluation.

IN# To accept input from selected input

device.

INPUT Allows you to enter values from the

keyboard while a program is executing.

INVERSE To reverse the character and back-

ground colour of the video display.

LEFTS Returns a specified number of

characters from the left-hand side of a

character string.

LET To assign a value to a variable.

LIST To display on the screen the Basic pro-

gram that is currently in memory.

LOAD To load a program from a data cassette

tape into the computer.

LOMEM To set the lowest memory location

available to a Basic program.

NEW Clears the current program from

memory and clears all variables associ-

ated with it.

NOISE To produce noise from the internal

noise generator.

NORMAL To return the video display from either

inverse or flashing modes to the default

mode.

ONERR GOTO To avoid halting the program when an

error is encountered.

ON...GOSUB
ON...GOTO To direct the program flow depending

on the value of a expression.

PAINT To fill a region on the screen with a

selected colour.

199

POKE To write a byte of data into a specified

memory location.

POP To change the action of a RETURN
from a subroutine.

PRINT To display characters on the display

screen.

PRINT USING To format output in a desired way.

PR# To switch the output to the selected

device.

READ To read values from a DATA statement

and to allocate them to variables.

RECALL To read numeric array values that have

been written to a data cassette tape.

REM To let you REMind yourself by

REMarks of what your program is

doing.

RESTORE To use DATA values again after they

have been READ.

RESUME To restart a program that has been

halted due to an error.

ROT To specify the angle at which a shape

is rotated when drawn on the screen,

used in conjuction with DRAW or

XDRAW.

RUN To start a program execution.

SAVE To write a program on to a data

cassette tape.

SCALE To increase or decrease the size of shapes

created by DRAW or XDRAW.

SHLOAD To load a shape table in memory.

SOUND To produce sounds through the internal

sound generator.

SPC To separate two printed items by a

specified number of spaces.

SPEED To specify the rate at which characters

are to be sent to an output device.

STORE To write a numeric array on to a data

cassette tape.

STOP

SWAP

To halt a program execution and return

to command level.

To interchange the values of two vari-

ables.

201

SWAP

TAB

TEXT

TROFF

TRON

USR

VTAB

WAIT

WIDTH

To move the cursor a specified number

of places to the right of the left margin.

To set the display to full-screen text

mode or to set character, background

and border colours.

To stop program statement numbers

from being displayed as a program

executes.

To display line numbers of a program as

they are executed.

This command specifies a parameter of

an assembly language subroutine.

To move the cursor a given number of

lines down the display screen.

To suspend a program's execution while

monitoring the status of an input port.

To set the width of the text window.

To erase a drawn shape.XDRAW

APPENDIX VII

LIST OF RESERVED WORDS IN LASER 3000 BASIC

ABS HIMEM
AND HOME
ASC HPLOT
AT HTAB
ATN IF

CALL IN

CHR$ INPUT

CLR INT

CONT INVERSE

COS LEFTS
DATA LEN
DEF LET

DEL LIST

DIM LOAD
DRAW LOG
END LOMEM

:

EXP Ml D$

FLASH NEW
FN NEXT
FOR NOISE

FRE NOT
GET NORMAL
GOSUB ON
GOTO ONEER
HCOLOR = OR
HGR PAINT

HGR2 PDL

PEEK STORE
POKE STEP
POP SWAP
POS TAB (

PR TAN
PRINT TEXT
READ THEN
RECALL TO
REM TROFF
RESTORE TRON
RETURN USING

RESUME USR
RIGHTS VAL
RND VTAB
ROT = WAIT
RUN WIDTH
SAVE XDRAW
SCALE = &
SGN +

SHLOAD —

SIN *

SOUND /

SPC (
>

SPEED <
SQR =

STOP
STR$

A

203

3000
PERSONAL COMPUTER

0)983 VTL. MADE IN KONG KONG
91 *0172-07

